Perinatal increases in TGF-{alpha} disrupt the saccular phase of lung morphogenesis and cause remodeling: microarray analysis.
نویسندگان
چکیده
Transforming growth factor-alpha (TGF-alpha) and its receptor, the epithelial growth factor receptor (EGFR), have been associated with lung remodeling in premature infants with bronchopulmonary dysplasia (BPD). The goal of this study was to target TGF-alpha overexpression to the saccular phase of lung morphogenesis and determine early alterations in gene expression. Conditional lung-specific TGF-alpha bitransgenic mice and single-transgene control mice were generated. TGF-alpha overexpression was induced by doxycycline (Dox) treatment from embryonic day 16.5 (E16.5) to E18.5. After birth, all bitransgenic pups died by postnatal day 7 (P7). Lung histology at E18.5 and P1 showed abnormal lung morphogenesis in bitransgenic mice, characterized by mesenchymal thickening, vascular remodeling, and poor apposition of capillaries to distal air spaces. Surfactant levels (saturated phosphatidylcholine) were not reduced in bitransgenic mice. Microarray analysis was performed after 1 or 2 days of Dox treatment during the saccular (E17.5, E18.5) and alveolar phases (P4, P5) to identify genes induced by EGFR signaling that were shared or unique to each phase. We found 196 genes to be altered (>1.5-fold change; P < 0.01 for at least 2 time points), with only 32% similarly altered in both saccular and alveolar phases. Western blot analysis and immunostaining showed that five genes selected from the microarrays (egr-1, SP-B, SP-D, S100A4, and pleiotrophin) were also increased at the protein level. Pathological changes in TGF-alpha-overexpressing mice bore similarities to premature infants born in the saccular phase who develop BPD, including remodeling of the distal lung septae and arteries.
منابع مشابه
Gene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملTransient induction of TGF- disrupts lung morphogenesis, causing pulmonary disease in adulthood
Le Cras, T. D., W. D. Hardie, G. H. Deutsch, K. H. Albertine, M. Ikegami, J. A. Whitsett, and T. R. Korfhagen. Transient induction of TGFdisrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 287: L718–L729, 2004. First published April 16, 2004; 10.1152/ajplung. 00084.2004.—Clinical studies have associated increased transforming growth factor (TG...
متن کاملTGF-ß1 Latency Associated Peptide Promotes Remodeling of Healing Cutaneous Wounds in the Rat
Background: The process of wound healing involves integrated events including inflammation, granulation tissue formation, matrix deposition and remodeling. Growth factors play a key role in the process. Among them transforming growth factor-ß1 (TGF-ß1) is known to accelerate tissue repair by promoting the synthesis and deposition of extracellular matrix proteins. However, persistence or overact...
متن کاملKruppel-like factor 5 is required for perinatal lung morphogenesis and function.
The transition to air breathing after birth requires both anatomic and biochemical maturation of the lung. Lung morphogenesis is mediated by complex paracrine interactions between respiratory epithelial cells and mesenchymal cells that direct transcriptional programs guiding patterning and cytodifferentiation of the lung. In the present study, transgenic mice were generated in which the Kruppel...
متن کاملAntenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs.
Chorioamnionitis is frequently associated with preterm birth and increases the risk of adverse outcomes such as bronchopulmonary dysplasia (BPD). Transforming growth factor (TGF)-beta1 is a key regulator of lung development, airway remodeling, lung fibrosis, and regulation of inflammation, and all these processes contribute to the development of BPD. Connective tissue growth factor (CTGF) is a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 2 شماره
صفحات -
تاریخ انتشار 2007